skip to main content


Search for: All records

Creators/Authors contains: "Mingming Gong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An organ segmentation method that can generalize to unseen contrasts and scanner settings can significantly reduce the need for retraining of deep learning models. Domain Generalization (DG) aims to achieve this goal. However, most DG methods for segmentation require training data from multiple domains during training. We propose a novel adversarial domain generalization method for organ segmentation trained on data from a single domain. We synthesize the new domains via learning an adversarial domain synthesizer (ADS) and presume that the synthetic domains cover a large enough area of plausible distributions so that unseen domains can be interpolated from synthetic domains. We propose a mutual information regularizer to enforce the semantic consistency between images from the synthetic domains, which can be estimated by patch-level contrastive learning. We evaluate our method for various organ segmentation for unseen modalities, scanning protocols, and scanner sites. 
    more » « less
  2. Unpaired image-to-image translation (I2I) is an ill-posed problem, as an infinite number of translation functions can map the source domain distribution to the target distribution. Therefore, much effort has been put into designing suitable constraints, e.g., cycle consistency (CycleGAN), geometry consistency (GCGAN), and contrastive learning-based constraints (CUTGAN), that help better pose the problem. However, these well-known constraints have limitations: (1) they are either too restrictive or too weak for specific I2I tasks; (2) these methods result in content distortion when there is a significant spatial variation between the source and target domains. This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC), which enforces a spatial perturbation function (T) and the translation operator (G) to be commutative (i.e., T \circ G = G \circ T ). In addition, we introduce two adversarial training components for learning the spatial perturbation function. The first one lets T compete with G to achieve maximum perturbation. The second one lets G and T compete with discriminators to align the spatial variations caused by the change of object size, object distortion, background interruptions, etc. Our method outperforms the state-of-the-art methods on most I2I benchmarks. We also introduce a new benchmark, namely the front face to profile face dataset, to emphasize the underlying challenges of I2I for real-world applications. We finally perform ablation experiments to study the sensitivity of our method to the severity of spatial perturbation and its effectiveness for distribution alignment. 
    more » « less
  3. null (Ed.)
    Purpose: To develop and evaluate a deep learning (DL) approach to extract rich information from high-resolution computed tomography (HRCT) of patients with chronic obstructive pulmonary disease (COPD). Methods: We develop a DL-based model to learn a compact representation of a subject, which is predictive of COPD physiologic severity and other outcomes. Our DL model learned: (a) to extract informative regional image features from HRCT; (b) to adaptively weight these features and form an aggregate patient representation; and finally, (c) to predict several COPD outcomes. The adaptive weights correspond to the regional lung contribution to the disease. We evaluate the model on 10 300 participants from the COPDGene cohort. Results: Our model was strongly predictive of spirometric obstruction ( r2 = 0.67) and grouped 65.4% of subjects correctly and 89.1% within one stage of their GOLD severity stage. Our model achieved an accuracy of 41.7% and 52.8% in stratifying the population-based on centrilobular (5-grade) and paraseptal (3-grade) emphysema severity score, respectively. For predicting future exacerbation, combining subjects' representations from our model with their past exacerbation histories achieved an accuracy of 80.8% (area under the ROC curve of 0.73). For all-cause mortality, in Cox regression analysis, we outperformed the BODE index improving the concordance metric (ours: 0.61 vs BODE: 0.56). Conclusions: Our model independently predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from CT imaging alone. This method has potential applicability in both research and clinical practice. 
    more » « less
  4. Causal discovery witnessed significant progress over the past decades. In particular,many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult;whenever they are present, the corresponding causal discovery algorithms canbe seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA1) that estimates the mixing matrix directly byback-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible.For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data. 
    more » « less
  5. A key problem in domain adaptation is determining what to transfer across different domains. We propose a data-driven method to represent these changes across multiple source domains and perform unsupervised domain adaptation. We assume that the joint distributions follow a specific generating process and have a small number of identifiable changing parameters, and develop a data-driven method to identify the changing parameters by learning low-dimensional representations of the changing class-conditional distributions across multiple source domains. The learned low-dimensional representations enable us to reconstruct the target-domain joint distribution from unlabeled target-domain data, and further enable predicting the labels in the target domain. We demonstrate the efficacy of this method by conducting experiments on synthetic and real datasets. 
    more » « less
  6. Covariate shift is a prevalent setting for supervised learning in the wild when the training and test data are drawn from different time periods, different but related domains, or via different sampling strategies. This paper addresses a transfer learning setting, with covariate shift between source and target domains. Most existing methods for correcting covariate shift exploit density ratios of the features to reweight the source-domain data, and when the features are high-dimensional, the estimated density ratios may suffer large estimation variances, leading to poor performance of prediction under covariate shift. In this work, we investigate the dependence of covariate shift correction performance on the dimensionality of the features, and propose a correction method that finds a low-dimensional representation of the features, which takes into account feature relevant to the target Y, and exploits the density ratio of this representation for importance reweighting. We discuss the factors that affect the performance of our method, and demonstrate its capabilities on both pseudo-real data and real-world applications. 
    more » « less
  7. null (Ed.)
    Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets. 
    more » « less
  8. Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are missing not at random (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users’ negative preferences. Recent studies modeled exposure, a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named “user intent” to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of user intents. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems. 
    more » « less